高一生如何學好三角函數
2021-04-09 10:24:20高考網整理
高一生如何學好三角函數
三角函數這章的內容由于公式多,且習題變換靈活等特點,建議你在復習本章時應注意以下幾點,如何學好三角函數就在眼前:
(1)首先對現有公式自己推導一遍,通過公式推導了解它們的內在聯系從而培養邏輯推理能力。
(2)對公式要抓住其特點進行記憶。有的公式運用一些順口溜進行記憶。
(3)三角函數是中學階段研究的一類初等函數。故對三角函數的性質研究應結合一般函數研究方法進行對比學習。如定義域、值域、奇偶性、周期性、圖象變換等。通過與函數這一章的對比學習,加深對函數性質的理解。但又要注意其個性特點,如周期性,通過對三角函數周期性的復習,類比到一般函數的周期性,再結合函數特點的研究類比到抽象函數,形成解決問題的能力。
(4)由于三角函數是我們研究數學的一門基礎工具,近幾年高考往往考查知識網絡交匯處的知識,故學習本章時應注意本章知識與其它章節知識的聯系。如平面向量、參數方程、換元法、解三角形等。
(5)重視數學思想方法的復習。在高考中,三角函數的試題都以選擇、填空題形式出現,因此復習中要重視選擇、填空題的一些特殊解題方法,如數形結合法、代入檢驗法、特殊值法,待定系數法、排除法等.另外對有些具體問題還需要掌握和運用一些基本結論.如:關于對稱問題,要利用y=sinx的對稱軸為x=kπ+π/2(k∈Z),對稱中心為(kπ,0),(k∈Z)等基本結論解決問題,同時還要注意對稱軸與函數圖象的交點的縱坐標特征.在求三角函數值的問題中,要學會用勾股數解題的方法,因為高考試題一般不能查表,給出的數都較特殊,因此主動發現和運用勾股數來解題能起到事半功倍的效果.
(6)加強三角函數應用意識的訓練。三角函數是以角為自變量的函數,也是以實數為自變量的函數,它產生于生產實踐,是客觀實際的抽象,同時又廣泛地應用于客觀實際,故應培養實踐第一的觀點.總之,三角部分的考查保持了內容穩定,難度穩定,題量穩定,題型穩定,考查的重點是三角函數的概念、性質和圖象,三角函數的求值問題以及三角變換的方法.
(7)變為主線、抓好訓練。變是本章的主題,在三角變換考查中,角的變換,三角函數名的變換,三角函數次數的變換,三角函數式表達形式的變換等比比皆是,在訓練中,強化“變”意識是關鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見問題的解法,把課本中習題進行歸類,并進行分析比較,尋找解題規律.針對高考中的題目看,還要強化變角訓練,經常注意收集角間關系的觀察分析方法.另外如何把一個含有不同名或不同角的三角函數式化為只含有一個三角函數關系式的訓練也要加強,這也是高考的重點.同時應掌握三角函數與二次函數相結合的題目.
(8)在復習中,應立足基本公式,在解題時,注意在條件與結論之間建立聯系,在變形過程中不斷尋找差異,講究算理,才能立足基礎,發展能力,適應高考.
對三角函數的學習,要多記公式,多做習題,多看輔導資料,我目前用的輔導書是湖南大學出版社的《高中數學學考必備用書》《高中數學知識問答詞典》,這個書對高中數學各章知識點、解題技巧、高考熱點、命題趨勢等作了較詳細的講解,是不錯的參考書。對掌握高考重難點很有幫助。
在本章內容中,高考試題主要反映在以下三方面:其一是考查三角函數的性質及圖象變換,尤其是三角函數的最大值與最小值、周期。
相關推薦: