高一數學教案:《函數的概念和圖象》優秀教學設計
來源:網絡整理 2018-11-25 17:28:16
高一數學教案:《函數的概念和圖象》優秀教學設計
教學目標:
1.進一步理解用集合與對應的語言來刻畫的函數的概念,進一步理解函數的本質是數集之間的對應;
2.進一步熟悉與理解函數的定義域、值域的定義,會利用函數的定義域與對應法則判定有關函數是否為同一函數;
3.通過教學,進一步培養學生由具體逐步過渡到符號化,代數式化,并能對以往學習過的知識進行理性化思考,對事物間的聯系的一種數學化的思考.
教學重點:
用對應來進一步刻畫函數;求基本函數的定義域和值域.
教學過程:
一、問題情境
1.情境.
復述函數及函數的定義域的概念.
2.問題.
概念中集合A為函數的定義域,集合B的作用是什么呢?
二、學生活動
1.理解函數的值域的概念;
2.能利用觀察法求簡單函數的值域;
3.探求簡單的復合函數f(f(x))的定義域與值域.
三、數學建構
1.函數的值域:
(1)按照對應法則f,對于A中所有x的值的對應輸出值組成的集合稱之
為函數的值域;
(2)值域是集合B的子集.
2.x g(x) f(x) f(g(x)),其中g(x)的值域即為f(g(x))的定義域;
四、數學運用
(一)例題.
例1 已知函數f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).
例2 根據不同條件,分別求函數f(x)=(x-1)2+1的值域.
(1)x∈{-1,0,1,2,3};
(2)x∈R;
(3)x∈[-1,3];
(4)x∈(-1,2];
(5)x∈(-1,1).
例3 求下列函數的值域:
①y=;②y=
.
例4 已知函數f(x)與g(x)分別由下表給出:
x |
1 |
2 |
3 |
4 |
|
x |
1 |
2 |
3 |
4 |
f(x) |
2 |
3 |
4 |
1 |
|
g(x) |
2 |
1 |
4 |
3 |
分別求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.
(二)練習.
(1)求下列函數的值域:
①y=2-x2; ②y=3-|x|.
(2)已知函數f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).
(3)已知函數f(x)=2x+1,g(x)=x2-2x+2,試分別求出g(f(x))和f(g(x))的值域,比較一下,看有什么發現.
(4)已知函數y=f(x)的定義域為[-1,2],求f(x)+f(-x)的定義域.
(5)已知f(x)的定義域為[-2,2],求f(2x),f(x2+1)的定義域.
五、回顧小結
函數的對應本質,函數的定義域與值域;
利用分解的思想研究復合函數.
六、作業
課本P31-5,8,9.
相關推薦
高考院校庫(挑大學·選專業,一步到位!)
高校分數線
專業分數線
- 日期查詢