全國

          熱門城市 | 全國 北京 上海 廣東

          華北地區 | 北京 天津 河北 山西 內蒙古

          東北地區 | 遼寧 吉林 黑龍江

          華東地區 | 上海 江蘇 浙江 安徽 福建 江西 山東

          華中地區 | 河南 湖北 湖南

          西南地區 | 重慶 四川 貴州 云南 西藏

          西北地區 | 陜西 甘肅 青海 寧夏 新疆

          華南地區 | 廣東 廣西 海南

          • 微 信
            高考

            關注高考網公眾號

            (www_gaokao_com)
            了解更多高考資訊

          您現在的位置:首頁 > 高考總復習 > 高考知識點 > 高考數學知識點 > 高三模擬文科數學試題之函數及其表示(3)

          高三模擬文科數學試題之函數及其表示(3)

          來源:網絡資源 2018-10-19 20:55:45

            26.解:(Ⅰ)當a=2時,f(x)=x|x-2|= ,作出圖象,

            由圖可知,函數y=f(x)的單調遞增區間為(-∞,1],[2,+∞);

            (Ⅱ)當a=-2時,f(x)=x|x+2|= ,

            ∵f(-1- )=- -2(-1- )=-1,f(-1)=(-1)2+2×(-1)=-1,f(2)=4+4=8,

            ∴函數y=f(x)在區間 的值域為[-1,8];

            (Ⅲ)∵a≠0,f(x)=x|x-a|= ,函數f(x)有兩個零點:0和a,

            若a>0,在(-∞, )上單調遞增,在( ,a)上單調遞減,在(a,+∞)上單調遞增.

            為使在區間(m,n)上既有最大值又有最小值,必須0≤m< ,n≤ a.

            若a<0,在(-∞,a)上單調遞增,在(a, )上單調遞減,在( ,+∞)上單調遞增.

            為使在區間(m,n)上既有最大值又有最小值,必須m≥ a,n≤0.

            27.解:(1)設函數g(x)的圖象上任一點P(x,y),且P關于A(2,1)的對稱點P'(x',y');

            則 ,解得 ;

            ∵點P'在函數f(x)=x+ 的圖象上,∴2-y=(4-x)+ ,

            ∴y=2-(4-x)- =x-2+ ,

            即g(x)=x-2+ ,(x≠4);

            (2)當x-4>0時,即x>4,(x-4)+ ≥2,當且僅當x=5時取"=";

            此時g(x)取到最小值4,

            ∵直線y=b與C2只有一個公共點,∴b=4,且交點坐標是(5,4);

            當x-4<0時,即x<4,-[(x-4)+ ]≥2,即(x-4)+ ≤-2,

            此時g(x)取到最大值0,當且僅當x=3時取"=";

            ∵直線y=b與C2只有一個公共點,∴b=0,且交點坐標是(3,0);

            綜上,b的值及交點坐標分別為4,(5,4)或0,(3,0).

            28.解:(1)令m=n=0,

            ∴f(0)=f(0)f(0),0<f(0)<1,

            ∴f(0)=1;

            (2)設m=x<0,n=-x>0,f(-x)∈(0,1)

            ∴f(m+n)=f(m)f(n)=f(0)=1,

            ∴f(m)>1,即當x<0時f(x)>1 …(4分)

            故f(x)>0在R上恒成立;

            (3)?x1<x2∈R,則x2-x1>0,0<f(x2-x1)<1,f(x1)>0,

            f(x2)-f(x1)=f(x2-x1+x1)-f(x1)

            =f(x2-x1)f(x1)-f(x1)

            =f(x1)[f(x2-x1)-1]<0

            ∴f(x)在R 上單調遞減.

            (4)f(x+ax)>f(2+x2)恒成立,

            ∴x+ax<2+x2恒成立,

            ∴a< +x-1,

            令g(x)= +x,知當x>0時,g(x)≥2 ,

            ∴a<2 -1.

            29.解:(1)由題意可得 ,

            即有 ,由p>-1,可得-p<1,

            即有-p<x<1,則函數的定義域為(-p,1);

            (2)f(x)=lg(1-x)+lg(1+x)=lg(1-x2),(-a<x≤a),

            令t=1-x2,(-a<x≤a),y=lgt,為遞增函數.

            由t的范圍是[1-a2,1],

            當x=a時,y=lgt取得最小值lg(1-a2),

            故存在x=a,函數f(x)取得最小值,且為lg(1-a2).

            30.解:(Ⅰ)根據題意,OA=12,OB=18,

            由截距式方程得:邊AB所在的直線的方程為 ,

            即 ;

            (Ⅱ)設點P的坐標為(x,y),

            則 .

            公寓占地面積為S=(60-x)(48-y)

            =(60-x)[48-(12- x)]

            =(60-x)(36+ x)=- x2+4x+2160

            =- (x-3)2+2166,

            當x=3時,Smax=2166,

            這時 .

            故點P的坐標為(3,10)時,

            才能使公寓占地面積最大,最大面積為2166m2.

            31.解:(1)a=-1時,2x-4x>0,2x(2x-1)<0

            ∴0<2x<1∴x<0,定義域為(-∞,0),

            (2)由題1+2x+a(4x+1)>0對一切x∈(-∞,1]恒成立

            令t=2x+1∈(1,3]

            在 上單減,在 上單增

            ∴ ∴ ,

            (3) 時,  ,

            記

            令n=2x∈[1,2], ,

            在[1,2]上單調遞減

            ∴ ,

            ∴-2≤log2g(n)≤0,

            ∵圖象無交點,∴b<-2或b>0,

            32.解:(I)∵f(x)是定義在R上的偶函數,x≤0時,f(x)=log (-x+1),

            ∴f(3)+f(-1)=f(-3)+f(-1)=log 4+log 2=-2-1=-3;

            (II)令x>0,則-x<0,f(-x)=log (x+1)=f(x)

            ∴x>0時,f(x)=log (x+1),

            則f(x)= .

            (Ⅲ)∵f(x)=log (-x+1)在(-∞,0]上為增函數,

            ∴f(x)在(0,+∞)上為減函數

            ∵f(a-1)<-1=f(1)

            ∴|a-1|>1,

            ∴a>2或a<0

            33.解:(1)∵f(xoy)=f(x)+f(y),f(2)=1,

            ∴f(2)=f(2×1)=f(2)+f(1),

            ∴f(1)=0.

            (2)∵f(x)在定義域(0,+∞)上單調遞減,

            且滿足f(xoy)=f(x)+f(y),f(2)=1,

            ∴f(-x)+f(3-x)=f(x2-3x)≥2=f(4).

            ∴ ,解得-1≤x<0.

            ∴不等式f(-x)+f(3-x)≥2的解集為[-1,0).

            34.解:(1)當x∈[3,6]時,f(x)為二次函數,

            且f(x)≤f(5),f(6)=2,

            設f(x)=ax2+bx+c,

            則有 ,解得 ;

            ∴f(x)=-x2+10x-22,∴f(3)=-1,

            又∵f(x)為奇函數,且在[0,3]上的一次函數,f(3)=-1,

            ∴ ,當x∈[-6,-3]時,-x∈[3,6],

            ∴f(-x)=-x2-10x-22,

            ∵f(x)為[-6,6]上的奇函數,

            ∴f(x)=-f(-x)=x2+10x+22.

            綜上所述,f(x)= ;

            (2)當-6≤x≤-3時,f(x)=(x+5)2-3,

            當x=-5時,f(x)的最小值為-3;

            x=-3時,f(-3)=1,即有f(x)∈[-3,1];

            當-3<x<3時,f(x)∈(-1,1);

            當3≤x≤6時,f(x)=-(x-5)2+3,

            f(x)∈[-1,3].

            即有y=f(x)的值域為[-3,3],

            故f(x)-a2-4a≥0恒成立,

            即a2+4a+3≤0,

            解得-3≤a≤-1,

            綜上:若f(x)-a2-4a≥0恒成立,求a的取值范圍為{a|-3≤a≤-1}.

            35.解:( I)取x=0,得f(0+y)=f(0)+f(y),

            即f(y)=f(0)+f(y),∴f(0)=0,

            ∵f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)

            ∴結合f(3)=6,得3f(1)=6,可得f(1)=2;

            (II)取y=-x,得f(0)=f[x+(-x)]=f(x)+f(-x)=0

            移項得f(-x)=-f(x)

            ∴函數f(x)是奇函數;

            (III)∵f(x)是奇函數,且f(kx2)+f(2x-1)<0在 上恒成立,

            ∴f(kx2)<f(1-2x)在 上恒成立,

            又∵f(x)是定義域在R的單調函數,且f(0)=0<f(1)=2,

            ∴f(x)是定義域在R上的增函數.

            ∴kx2<1-2x在 上恒成立.

            ∴ 在 上恒成立.

            令 ,

            由于 ,∴ .

            ∴g(x)min=g(1)=-1.∴k<-1.

            則實數k的取值范圍為(-∞,-1).

            36.解:(1)因為f(xy)=f(x)+f(y),

            所以,令x=y=1代入得,

            f(1)=f(1)+f(1),解得f(1)=0,

            即f(1)的值為0;

            (2)因為f(3)+f( )=f(3× )=f(1)=0,

            且f( )=-1,所以,f(3)=1,

            所以,f(3)+f(3)=f(9)=2,

            因此,不等式f(x)-f( )≥2可化為:

            f(x)≥f( )+f(9)=f( ),

            再根據函數f(x)是定義在(0,+∞)上單調遞增,

            所以, ,解得,x≥1+ ,

            故原不等式的解集為:[1+ ,+∞).

            37.解:(1)依據題意得:當0<x≤2時,S= o2ox=x,

            當2<x≤4時,S= o2o2=2,當4<x≤6時,S= o2o(6-x)=6-x,

            ∴ ,

            定義域是(0,6),值域是(0,2).

            (2)∵f(3)=2,f(2)=2

            ∴f[f(3)]=f(2)=2.

            38.解:(1)令x=0,y= 得f( )+f(- )=2f(0)cos =0,∴f(- )=-2.

            (2)令 ,得 ,

            令 ,得 ,

            兩式相加: ,

            令x=0,y=x得f(x)+f(-x)=2f(0)cosx=2cosx,

            ∴ ,∴ ,

            ∴ =2sin(x+ )+cos(x+ ),

            ∴f(x)=cosx+2sinx.

            ∴

            =   (i)

            ∵ ,∴ ,

            ∴(i) .當且僅當 時取等號,此時 .

            ∴ .

            39.解:(1)由圖象的平移,h(x)=2|x-1|+1

            (2)解:函數y=h(x)的圖象與函數g(x)=kx2的圖象在 上至少 有一個交點,等價于h(x)-g(x)=0在 上有解,

            即2|x-1|+1-kx2=0在 上有解,

            解法一:用分離參數處理:kx2=2|x-1|+1在 上有解, 在 上有解,

            等價于 在x∈[1,3]上有解或者 在 上有解,

            因為

            綜上, .

            解法二:用實根分布:

            原題等價于kx2-2(x-1)-1=0在x∈[1,3]上有解或者kx2-2(1-x)-1=0在 上有解,

            (1)kx2-2(x-1)-1=0在x∈[1,3]上有解

            令g(x)=kx2-2(x-1)-1,k=0時顯然無解.

            當k<0時, (舍)

            當k>0, 或者

            所以

            (2)kx2-2(1-x)-1=0在 上有解:

            令h(x)=kx2+2x-3,k=0時顯然無解.

            當k>0時, ,所以1≤k≤8

            當k<0時, (舍)或者

            所以1≤k≤8

            綜上, .

            40.解:(1)證明:設x1>x2(x1,x2∈R),則x1-x2>0,又當x>0時,f(x)>1,

            所以f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-1-f(x2)=f(x1-x2)-1>1-1=0,

            所以f(x1)>f(x2),

            故f(x)為R上的增函數;

            (2)因為f(x)為R上的增函數,由 ,

            ∴f[(1+x) ]>f(x2-1),

            ∴(1+x) >x2-1,對 恒成立

            令t= ,則t∈[ , ],

            原式等價于(1+x)t>x2-1,t∈[ , ]恒成立,

            令g(t)=(1+x)t-x2+1,要使得 時恒成立,

            只需要 ,

            解得-1<x< .
           

          收藏

          高考院校庫(挑大學·選專業,一步到位!)

          高校分數線

          專業分數線

          京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

          違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

          高考網版權所有 Copyright © 2005-2022 www.scgzkg.net . All Rights Reserved

          AV无码免费永久在线观看| 精品久久久久久久无码| 日韩人妻精品无码一区二区三区 | 人妻无码αv中文字幕久久| 性无码专区| 中文字幕av无码一区二区三区电影 | 久久亚洲中文字幕精品一区| 中文字幕av日韩精品一区二区| 无码国产精品一区二区免费模式| 久久亚洲中文字幕精品一区| 中文字幕久久精品无码| 中文字幕专区高清在线观看| 中文字幕在线观看国产| 国产成人无码18禁午夜福利p| 日韩乱码人妻无码中文字幕| 亚洲欧洲日产国码无码久久99| 伊人久久无码精品中文字幕| 中文一国产一无码一日韩| 亚洲精品无码久久久久AV麻豆| 国产麻豆天美果冻无码视频| 亚洲国产av无码精品| 精品国产V无码大片在线看| 精品久久久久久无码免费| 日韩精品无码一区二区三区四区| 东京热加勒比无码视频| 日韩三级中文字幕| 日本中文字幕在线| 精品人妻大屁股白浆无码| 亚洲福利中文字幕在线网址| 永久免费无码网站在线观看个| 午夜不卡无码中文字幕影院| 亚洲日本中文字幕| 永久免费无码日韩视频| av无码久久久久不卡免费网站| 八戒理论片午影院无码爱恋| 中文字幕免费不卡二区| 久久久久久国产精品无码超碰 | 在线亚洲欧美中文精品| 久久午夜无码鲁丝片| 日韩va中文字幕无码电影| 人妻少妇久久中文字幕|