2020高三復習策略:高考數學最易失分知識點全梳理(2)
2020-02-21 17:52:17高考網整理
11、忽視零向量致誤
零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。
12、向量夾角范圍不清致誤
解題時要全面考慮問題.數學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
13、忽視零截距
解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式。因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。
14、忽視圓錐曲線定義中條件致誤
利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|。
如果不滿足第一個條件,動點到兩定點的距離之差為常數,而不是差的絕對值為常數,那么其軌跡只能是雙曲線的一支。
15、誤判直線與圓錐曲線位置關系
過定點的直線與雙曲線的位置關系問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項系數不為零,當二次項系數為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多只有一個交點;
二是利用數形結合的思想,畫出圖形,根據圖形判斷直線和雙曲線各種位置關系。在直線與圓錐曲線的位置關系中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。
16、兩個計數原理不清致誤
分步加法計數原理與分類乘法計數原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數對象的本質特征與形成過程,按照事件的結果來分類,按照事件的發生過程來分步,然后應用兩個基本原理解決.
對于較復雜的問題既要用到分類加法計數原理,又要用到分步乘法計數原理,一般是先分類,每一類中再分步,注意分類、分步時要不重復、不遺漏,對于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。
17、排列、組合不分致誤
為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數學化,建立適當的模型,再應用相關知識解決.
建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。
18、混淆項系數與二項式系數致誤
在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,…,n項的二項式系數分別是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而項的系數是二項式系數與其他數字因數的積。
19、循環結束判斷不準致誤
控制循環結構的是計數變量和累加變量的變化規律以及循環結束的條件.在解答這類題目時首先要弄清楚這兩個變量的變化規律,其次要看清楚循環結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束。
20、條件結構對條件判斷不準致誤
條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重復,在解題時對判斷條件要仔細辨別,看清楚條件和函數的對應關系,對條件中的數值不要漏掉也不要重復了端點值。
21、復數的概念不清致誤
對于復數a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,復數a+bi(a,b∈R)是實數a;當b≠0時,復數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數。
解決復數概念類試題要仔細區分以上概念差別,防止出錯.另外,i2=-1是實現實數與虛數互化的橋梁,要適時進行轉化,解題時極易丟掉“-”而出錯。
最新高考資訊、高考政策、考前準備、高考預測、志愿填報、錄取分數線等
高考時間線的全部重要節點
盡在"高考網"微信公眾號