高考數學復習初等函數知識點:函數與方程
來源:網絡資源 2019-05-06 18:33:10
數學思想是對數學事實與理論經過概括后產生的本質認識,下面是高考數學復習初等函數知識點:函數與方程,希望對考生有幫助。
一、函數的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B.
注意點:(1)對映射定義的理解.(2)判斷一個對應是映射的方法.一對多不是映射,多對一是映射
2、函數
構成函數概念的三要素 ①定義域②對應法則③值域
兩個函數是同一個函數的條件:三要素有兩個相同
二、函數的解析式與定義域
1、求函數定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開方數不小于零,零取零次方沒有意義;
(3)對數函數的真數必須大于零;
(4)指數函數和對數函數的底數必須大于零且不等于1;
三、函數的值域
1求函數值域的方法
①直接法:從自變量x的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;
②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且 ∈R的分式;
④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);
⑤單調性法:利用函數的單調性求值域;
⑥圖象法:二次函數必畫草圖求其值域;
⑦利用對號函數
⑧幾何意義法:由數形結合,轉化距離等求值域.主要是含絕對值函數
四、函數的奇偶性
1.定義:設y=f(x),x∈A,如果對于任意 ∈A,都有 ,則稱y=f(x)為偶函數.
如果對于任意 ∈A,都有 ,則稱y=f(x)為奇
函數.
2.性質:
①y=f(x)是偶函數 y=f(x)的圖象關于 軸對稱,y=f(x)是奇函數 y=f(x)的圖象關于原點對稱,
②若函數f(x)的定義域關于原點對稱,則f(0)=0
③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[兩函數的定義域D1 ,D2,D1∩D2要關于原點對稱]
3.奇偶性的判斷
①看定義域是否關于原點對稱 ②看f(x)與f(-x)的關系
五、函數的單調性
1、函數單調性的定義:
2 設 是定義在M上的函數,若f(x)與g(x)的單調性相反,則 在M上是減函數;若f(x)與g(x)的單調性相同,則 在M上是增函數.
相關推薦
高考院校庫(挑大學·選專業,一步到位!)
高校分數線
專業分數線
- 日期查詢