全國(guó)

          熱門城市 | 全國(guó) 北京 上海 廣東

          華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

          東北地區(qū) | 遼寧 吉林 黑龍江

          華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

          華中地區(qū) | 河南 湖北 湖南

          西南地區(qū) | 重慶 四川 貴州 云南 西藏

          西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

          華南地區(qū) | 廣東 廣西 海南

          • 微 信
            高考

            關(guān)注高考網(wǎng)公眾號(hào)

            (www_gaokao_com)
            了解更多高考資訊

          首頁(yè) > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 高中數(shù)學(xué)三角函數(shù)的有關(guān)概念和公式大全

          高中數(shù)學(xué)三角函數(shù)的有關(guān)概念和公式大全

          2019-01-08 20:13:59三好網(wǎng)

            三角函數(shù)知識(shí)點(diǎn)總結(jié):銳角三角函數(shù)公式

            sin α=∠α的對(duì)邊 / 斜邊

            cos α=∠α的鄰邊 / 斜邊

            tan α=∠α的對(duì)邊 / ∠α的鄰邊

            cot α=∠α的鄰邊 / ∠α的對(duì)邊

            倍角公式

            Sin2A=2SinA?CosA

            Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

            tan2A=(2tanA)/(1-tanA^2)

            (注:SinA^2 是sinA的平方 sin2(A) )

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):三倍角公式

            sin3α=4sinα·sin(π/3+α)sin(π/3-α)

            cos3α=4cosα·cos(π/3+α)cos(π/3-α)

            tan3a = tan a · tan(π/3+a)· tan(π/3-a)

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):三倍角公式推導(dǎo)

            sin3a

            =sin(2a+a)

            =sin2acosa+cos2asina

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):輔助角公式

            Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

            sint=B/(A^2+B^2)^(1/2)

            cost=A/(A^2+B^2)^(1/2)

            tant=B/A

            Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降冪公式

            sin^2(α)=(1-cos(2α))/2=versin(2α)/2

            cos^2(α)=(1+cos(2α))/2=covers(2α)/2

            tan^2(α)=(1-cos(2α))/(1+cos(2α))

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):推導(dǎo)公式

            tanα+cotα=2/sin2α

            tanα-cotα=-2cot2α

            1+cos2α=2cos^2α

            1-cos2α=2sin^2α

            1+sinα=(sinα/2+cosα/2)^2

            =2sina(1-sin2a)+(1-2sin2a)sina

            =3sina-4sin3a

            cos3a

            =cos(2a+a)

            =cos2acosa-sin2asina

            =(2cos2a-1)cosa-2(1-sin2a)cosa

            =4cos3a-3cosa

            sin3a=3sina-4sin3a

            =4sina(3/4-sin2a)

            =4sina[(√3/2)2-sin2a]

            =4sina(sin260°-sin2a)

            =4sina(sin60°+sina)(sin60°-sina)

            =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

            =4sinasin(60°+a)sin(60°-a)

            cos3a=4cos3a-3cosa

            =4cosa(cos2a-3/4)

            =4cosa[cos2a-(√3/2)2]

            =4cosa(cos2a-cos230°)

            =4cosa(cosa+cos30°)(cosa-cos30°)

            =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

            =-4cosasin(a+30°)sin(a-30°)

            =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

            =-4cosacos(60°-a)[-cos(60°+a)]

            =4cosacos(60°-a)cos(60°+a)

            上述兩式相比可得

            tan3a=tanatan(60°-a)tan(60°+a)

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):半角公式

            tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

            cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

            sin^2(a/2)=(1-cos(a))/2

            cos^2(a/2)=(1+cos(a))/2

            tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

            sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

            cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

            tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):兩角和差

            cos(α+β)=cosα·cosβ-sinα·sinβ

            cos(α-β)=cosα·cosβ+sinα·sinβ

            sin(α±β)=sinα·cosβ±cosα·sinβ

            tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

            tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):和差化積

            sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

            sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

            cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

            cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

            tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

            tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):積化和差

            sinαsinβ = [cos(α-β)-cos(α+β)] /2

            cosαcosβ = [cos(α+β)+cos(α-β)]/2

            sinαcosβ = [sin(α+β)+sin(α-β)]/2

            cosαsinβ = [sin(α+β)-sin(α-β)]/2

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):誘導(dǎo)公式

            sin(-α) = -sinα

            cos(-α) = cosα

            tan (—a)=-tanα

            sin(π/2-α) = cosα

            cos(π/2-α) = sinα

            sin(π/2+α) = cosα

            cos(π/2+α) = -sinα

            sin(π-α) = sinα

            cos(π-α) = -cosα

            sin(π+α) = -sinα

            cos(π+α) = -cosα

            tanA= sinA/cosA

            tan(π/2+α)=-cotα

            tan(π/2-α)=cotα

            tan(π-α)=-tanα

            tan(π+α)=tanα

            誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

            萬(wàn)能公式

            sinα=2tan(α/2)/[1+tan^(α/2)]

            cosα=[1-tan^(α/2)]/1+tan^(α/2)]

            tanα=2tan(α/2)/[1-tan^(α/2)]

            高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):其它公式

            (1)(sinα)^2+(cosα)^2=1

            (2)1+(tanα)^2=(secα)^2

            (3)1+(cotα)^2=(cscα)^2

            證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

            (4)對(duì)于任意非直角三角形,總有

            tanA+tanB+tanC=tanAtanBtanC

            證:

            A+B=π-C

            tan(A+B)=tan(π-C)

            (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

            整理可得

            tanA+tanB+tanC=tanAtanBtanC

            得證

            同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

            由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

            (5)cotAcotB+cotAcotC+cotBcotC=1

            (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

            (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

            (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

            (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

            cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

            sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

            tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

          [標(biāo)簽:高考備考 復(fù)習(xí)方法]

          分享:

          高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位!)

          高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位!)

          高校分?jǐn)?shù)線

          專業(yè)分?jǐn)?shù)線

          日期查詢
          • 歡迎掃描二維碼
            關(guān)注高考網(wǎng)微信
            ID:gaokao_com

          • 👇掃描免費(fèi)領(lǐng)
            近十年高考真題匯總
            備考、選科和專業(yè)解讀
            關(guān)注高考網(wǎng)官方服務(wù)號(hào)


          久久久久综合中文字幕| 精品久久久久久无码国产| 麻豆aⅴ精品无码一区二区| 中文字幕无码毛片免费看| 免费精品久久久久久中文字幕| 亚洲精品无码av人在线观看| 亚洲成a人无码av波多野按摩 | 国产品无码一区二区三区在线蜜桃| 未满十八18禁止免费无码网站| 亚洲精品无码永久中文字幕 | 中文字幕久久欲求不满| 日韩精品无码久久久久久| 亚洲日本中文字幕区| 国产精品免费无遮挡无码永久视频 | 国产精品亚洲аv无码播放| 日本aⅴ精品中文字幕| 无码国内精品人妻少妇| 在线综合+亚洲+欧美中文字幕| 国产热の有码热の无码视频| 亚洲精品人成无码中文毛片| 日韩精品无码Av一区二区| 国产成人无码精品久久久性色 | 亚洲欧洲美洲无码精品VA| 亚洲中文字幕无码久久精品1 | 亚洲AV永久无码精品一区二区国产| 亚洲国产精品无码专区在线观看| 欧美日韩v中文字幕| 国产免费黄色无码视频| 亚洲va无码专区国产乱码| 最近更新中文字幕在线| 无码欧精品亚洲日韩一区夜夜嗨 | 国产成人亚洲综合无码| 亚洲精品无码久久一线| 曰韩中文字幕在线中文字幕三级有码 | 成人无码区免费A∨直播| 亚洲精品无码MV在线观看| 亚洲中文字幕伊人久久无码| а√在线中文网新版地址在线| 精品人体无码一区二区三区| 无码国产精品一区二区免费3p| 日韩精品无码免费专区午夜 |