高二數學教案:《簡單的線性規劃》教學設計(二)(2)
來源:網絡整理 2018-11-21 17:20:22
三、教法建議
(1)對學生來說,二元一次不等式(組)表示平面的區域是一個比較陌生的概念,不象二元一次方程表示直線那樣已早有所知,為使學生對這一概念的引進不感到突然,應建立新舊知識的聯系,以便自然地給出概念
(2)建議將本節新課講授分為五步(思考、嘗試、猜想、證明、歸納)來進行,目的是為了分散難點,層層遞進,突出重點,只要學生對舊知識掌握較好,完全有可能由學生主動去探求新知,得出結論.
(3)要舉幾個典型例題,特別是似是而非的例子,對理解二元一次不等式(組)表示的平面區域的含義是十分必要的.
(4)建議通過本節教學著重培養學生掌握“數形結合”的數學思想,盡管側重于用“數”研究“形”,但同時也用“形”去研究“數”,這對培養學生觀察、聯想、猜測、歸納等數學能力是大有益處的.
(5)對作業、思考題、研究性題的建議:①作業主要訓練學生規范的解題步驟和作圖能力;②思考題主要供學有余力的學生課后完成;③研究性題綜合性較大,主要用于拓寬學生的思維.
(6)若實際問題要求的最優解是整數解,而我們利用圖解法得到的解為非整數解(近似解),應作適當的調整,其方法應以與線性目標函數的直線的距離為依據,在直線的附近尋求與此直線距離最近的整點,不要在用圖解法所得到的近似解附近尋找.
如果可行域中的整點數目很少,采用逐個試驗法也可.
(7)在線性規劃的實際問題中,主要掌握兩種類型:一是給定一定數量的人力、物力資源,問怎樣運用這些資源能使完成的任務量最大,收到的效益最大;二是給定一項任務問怎樣統籌安排,能使完成的這項任務耗費的人力、物力資源最小.
線性規劃教學設計方案(一)
教學目標
使學生了解并會作二元一次不等式和不等式組表示的區域.
重點難點
了解二元一次不等式表示平面區域.
教學過程
【引入新課】
我們知道一元一次不等式和一元二次不等式的解集都表示直線上的點集,那么在平面坐標系中,二元一次不等式的解集的意義是什么呢?
【二元一次不等式表示的平面區域】
1.先分析一個具體的例子
相關推薦
高考院校庫(挑大學·選專業,一步到位!)
高校分數線
專業分數線
- 日期查詢